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Appendix

A Proofs of Theoretical Results

Proof of Lemma 1. Using the expressions for U e
j,k(x∗t (zk, ct),y) and substituting for y2 =

−y1 and zR = −zL yields

For executive L:

U e
L,L(x∗t (zL, ct)) =



y21(−8γ(ω − 1) + 6ω − 8)− 2ωz2L, if ct = (0, 0)

y21 ((ω − 2γ(ω − 1))2 + 2(ω − 2)) +

2ωy1zL(2γ(ω − 1)− ω + 2) + (ω − 2)ωz2L, if ct = (0, 1)

y21 ((ω − 2γ(ω − 1))2 + 2(ω − 2)) +

2ωy1zL(−2γ(ω − 1) + ω − 2) + (ω − 2)ωz2L, if ct = (1, 0)

2(ω − 1) (y21(4(γ − 1)γ(ω − 1) + ω) + ωz2L) , if ct = (1, 1)

U e
L,R(x∗t (−zL, ct)) =



y21(−8γ(ω − 1) + 6ω − 8)− 2ωz2L, if ct = (0, 0)

y21 ((ω − 2γ(ω − 1))2 + 2(ω − 2)) +

2ωy1zL(2γ(ω − 1)− ω + 2)− ω(3ω + 2)z2L, if ct = (0, 1)

y21 ((ω − 2γ(ω − 1))2 + 2(ω − 2)) +

2ωy1zL(−2γ(ω − 1) + ω − 2)− ω(3ω + 2)z2L, if ct = (1, 0)

2(ω − 1)y21(4(γ − 1)γ(ω − 1) + ω)− 2ω(3ω + 1)z2L, if ct = (1, 1)
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For executive R:

U e
R,R(x∗t (−zL, ct)) =



y21(−8γ(ω − 1) + 6ω − 8)− 2ωz2L, if ct = (0, 0)

y21 ((ω − 2γ(ω − 1))2 + 2(ω − 2)) +

2ωy1zL(−2γ(ω − 1) + ω − 2) + (ω − 2)ωz2L, if ct = (0, 1)

y21 ((ω − 2γ(ω − 1))2 + 2(ω − 2)) +

2ωy1zL(2γ(ω − 1)− ω + 2) + (ω − 2)ωz2L, if ct = (1, 0)

2(ω − 1) (y21(4(γ − 1)γ(ω − 1) + ω) + ωz2L) , if ct = (1, 1)

U e
R,L(x∗t (zL, ct)) =



y21(−8γ(ω − 1) + 6ω − 8)− 2ωz2L, if ct = (0, 0)

y21 ((ω − 2γ(ω − 1))2 + 2(ω − 2)) +

2ωy1zL(−2γ(ω − 1) + ω − 2)− ω(3ω + 2)z2L, if ct = (0, 1)

y21 ((ω − 2γ(ω − 1))2 + 2(ω − 2)) +

2ωy1zL(2γ(ω − 1)− ω + 2)− ω(3ω + 2)z2L, if ct = (1, 0)

2(ω − 1)y21(4(γ − 1)γ(ω − 1) + ω)− 2ω(3ω + 1)z2L, if ct = (1, 1)

Subtracting expressions for particular executive and centralization profile when executives

from different parties are in power implies equation (5).

Proof of Lemma 2. The preference orderings for each type of executive and for cut-offs

directly follow from comparison of relevant expressions in the proof of Lemma 1.

Proof of Proposition 1. Denote the difference between the terms that correspond to the

age 1 period t executive’s utility from a strong executive in period t+ 1 as:

∀j ∈ {L,R} : ∆ ≡ U e
j,j(x

∗
t (zj, (1, 1)))− Ept+1

[
U e
j,−j(x

∗
t+1(z−j, ct+1))

]
.

It is straightforward to see that due to symmetrical ideal points of executives and localities,

∆ does not depend on the executive’s party. In addition ∆ > 0, since U e
j,j(x

∗
t (zj, (1, 1))) is

the maximum possible stage utility a party j executive can receive and no lottery over other
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possible policy choices can bring higher utility.

To see how the electoral environment changes the incentives to adopt different centralization

profiles, we take the derivative of VL (ct, pt) with respect to pt at each possible profile:

∂VL (ct, pt)

∂pt
=



(1− q) ∆ if ct = (0, 0)

q 4ω2z2L + (1− q) ∆ if ct = (0, 1)

q 4ω2z2L + (1− q) ∆ if ct = (1, 0)

q 8ω2z2L + (1− q) ∆ if ct = (1, 1).

(14)

It is clear that VL (ct, pt) is linear and increasing in pt, and furthermore

∂VL ((1, 1), pt)

∂pt
>
∂VL ((1, 0), pt)

∂pt
=
∂VL ((0, 1), pt)

∂pt
>
∂VL ((0, 0), pt)

∂pt
> 0.

The corresponding derivatives for a party R executive’s objective are identical. Since higher

levels of centralization have higher slopes with respect to pt, centralization must be mono-

tonically increasing in pt.

The existence of the cut-off values of pt, p and p, for which there are unique most pre-

ferred centralization profile for executive from party j can be proven directly by comparison

of expressions for Vj (ct, pt) for each executive across different centralization profiles. The

expressions are as follows
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VL(ct, pt) =

(1− q)(U e
L,L(x∗t (zL, (1, 1)))− (1− pt)∆)−

q (y21(8γ(ω − 1)− 6ω + 8) + 2ωz2L) + y21(−8γ(ω − 1) + 6ω − 8)− 2ωz2L, if ct = (0, 0)

(1− q)(U e
L,L(x∗t (zL, (1, 1)))− (1− pt)∆)+

q (ωz2L((4pt − 3)ω − 2) + y21 ((ω − 2γ(ω − 1))2 + 2(ω − 2)) + 2ωy1zL(2γ(ω − 1)− ω + 2)) +

y21 ((ω − 2γ(ω − 1))2 + 2(ω − 2)) + 2ωy1zL(2γ(ω − 1)− ω + 2) + (ω − 2)ωz2L, if ct = (0, 1)

(1− q)(U e
L,L(x∗t (zL, (1, 1)))− (1− pt)∆)+

q (ωz2L((4pt − 3)ω − 2) + y21 ((ω − 2γ(ω − 1))2 + 2(ω − 2)) + 2ωy1zL(−2γ(ω − 1) + ω − 2)) +

y21 ((ω − 2γ(ω − 1))2 + 2(ω − 2)) + 2ωy1zL(−2γ(ω − 1) + ω − 2) + (ω − 2)ωz2L, if ct = (1, 0)

(1− q)(U e
L,L(x∗t (zL, (1, 1)))− (1− pt)∆)+

q (2ωz2L((4pt − 3)ω − 1) + 2(ω − 1)y21(4(γ − 1)γ(ω − 1) + ω)) +

2(ω − 1) (y21(4(γ − 1)γ(ω − 1) + ω) + ωz2L) , if ct = (1, 1)

VR(ct, pt) =

(1− q)(U e
R,R(x∗t (zR, (1, 1)))− (1− pt)∆)−

q (y21(8γ(ω − 1)− 6ω + 8) + 2ωz2L) + y21(−8γ(ω − 1) + 6ω − 8)− 2ωz2L, if ct = (0, 0)

(1− q)(U e
R,R(x∗t (zR, (1, 1)))− (1− pt)∆)+

q (ωz2L((4pt − 3)ω − 2) + y21 ((ω − 2γ(ω − 1))2 + 2(ω − 2)) + 2ωy1zL(−2γ(ω − 1) + ω − 2)) +

y21 ((ω − 2γ(ω − 1))2 + 2(ω − 2)) + 2ωy1zL(−2γ(ω − 1) + ω − 2) + (ω − 2)ωz2L, if ct = (0, 1)

(1− q)(U e
R,R(x∗t (zR, (1, 1)))− (1− pt)∆)+

q (ωz2L((4pt − 3)ω − 2) + y21 ((ω − 2γ(ω − 1))2 + 2(ω − 2)) + 2ωy1zL(2γ(ω − 1)− ω + 2)) +

y21 ((ω − 2γ(ω − 1))2 + 2(ω − 2)) + 2ωy1zL(2γ(ω − 1)− ω + 2) + (ω − 2)ωz2L, if ct = (1, 0)

(1− q)(U e
R,R(x∗t (zR, (1, 1)))− (1− pt)∆)+

q (2ωz2L((4pt − 3)ω − 1) + 2(ω − 1)y21(4(γ − 1)γ(ω − 1) + ω)) +

2(ω − 1) (y21(4(γ − 1)γ(ω − 1) + ω) + ωz2L) , if ct = (1, 1)
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The resulting cut-offs that define the most preferred centralization profile in infinite horizon

game are given in equations (9) and (10) and are the same for both executives for their

respective probabilities of re-election. It is straightforward to see that the difference between

these cut-offs is

p− p =
1 + q

q

(2γ + 2(1− γ)/ω − 1) y1
zL

.

Since zL < 0 and y1 < 0, and 2
[
γ + (1− γ) 1

ω
)
]
− 1 > 0, this expression is always positive,

and thus p > p.

Proof of Proposition 2. The proof directly follows from solving for p = 0 and p = 0 using

the expressions in equations (9) and (10).

Solving p = 0 for zL produces one negative root that simplifies to:

z′p = −
1 + q + 2

√
q(1 + q)

1− 3q

(
2γ +

2(1− γ)

ω
− 1

)
y1. (15)

For zL < z′p, p > 0; Proposition 1 implies that (0, 0) is the preferred profile for pt < p. This

cut-point exists (i.e., is negative) if and only if q > 1
3
. In addition, it is straightforward to

show that z′p < y1 when q > 1
3
: Executives have to be more polarized than localities for (0, 0)

to be implementable.

Solving p = 0 for zL yields two roots. The first is:

zc =
1 + q − 2

√
q(1 + q)

1− 3q

(
2γ +

2(1− γ)

ω
− 1

)
y1. (16)

For zL > zc, p < 0. Again invoking Proposition 1, for zL ≥ zc, (1, 1) is the preferred profile

for all pt. It can be shown that when q > 1
3
, p = 0 can hold only if zL > y1.
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The second root is:

z′′p =
1 + q + 2

√
q(1 + q)

1− 3q

(
2γ +

2(1− γ)

ω
− 1

)
y1. (17)

For zL < z′′p , p < 0; by Proposition Proposition 1, for zL < z′′p , (1, 1) is the preferred profile

for all pt. This cut-point exists (i.e., is negative) if and only if q < 1
3
.

Now define

zp =

 z′p if q > 1
3

z′′p if q < 1
3

Part (i) of the result follows from the derivation of zc. Part (ii) follows from the derivations

of zc and zp. Finally, parts (iii) and (iv) follow from the derivation of zp.

Proof of Proposition 3. We first provide the condition under which profile (0, 0) dominates

profile (1, 1). From (12), it is obvious thatW00(x
∗) is constant in zL andW11(x

∗) is maximized

at zL = 0. Evaluating both at zL = 0 yields that W00(x
∗) is always higher than W11(x

∗) if:

γ >
2 + ω

2 + 2ω
.

Next, we provide the condition under which profile (1, 0) dominates profile (0, 1). From (12),

it is straightforward to verify that W01(x
∗) and W10(x

∗) are parabolas that are symmetric

around zL = 0 and maximized at y1(1− 2γ) and −y1(1− 2γ) respectively, but are otherwise

identical. Thus (1, 0) dominates profile (0, 1) if and only if −y1(1− 2γ) < y1(1− 2γ). Since

y1 < 0, this is equivalent to γ > 1/2.

Now consider three cases. (i) If γ > (2+ω)/(2+2ω), then (1, 1) is never welfare maximizing

and (1, 0) dominates (0, 1). Solving for zL, the welfare under (1, 0) is higher than under (0, 0)
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if:

W10(x
∗) > W00(x

∗)

zL ∈
(
y1(2γ(ω − 1)− ω + 2)

ω
,
y1(2γ(ω + 1)− ω − 2)

ω

)
(18)

Since y1(2γ(ω+1)−ω−2)/ω > 0 and y1(2γ(ω−1)−ω+2)/ω < 0, (1, 0) is welfare maximizing

for zL > y1(2γ(ω − 1)− ω + 2)/ω and (0, 0) is welfare maximizing otherwise.

(ii) If γ ∈ (1/2, (2 + ω)/(2 + 2ω)], then (0, 0), (1, 0), and (1, 1) may all be welfare maximizing.

The condition for W10(x
∗) > W00(x

∗) is given by (18). The condition for W11(x
∗) > W10(x

∗)

evaluates to:

zL ∈
(
y1(−2γ(ω + 1) + ω + 2)

ω
,
y1(−2γ(ω − 1) + ω − 2)

ω

)
.

Since y1(−2γ(ω − 1) + ω − 2)/ω > 0 and y1(−2γ(ω + 1) + ω + 2)/ω < 0 for these values of

γ, W11(x
∗) > W10(x

∗) for zL > y1(−2γ(ω + 1) + ω + 2)/ω. Observe finally that:

y1(−2γ(ω + 1) + ω + 2)

ω
− y1(2γ(ω − 1)− ω + 2)

ω
=
y1(2− 4γ)

ω
> 0,

so the interval of zL for which (1, 0) is welfare maximizing is non-empty.

(iii) If γ ≤ 1/2, the analysis is identical to case (ii), but (since (0, 1) dominates (1, 0))

substituting in profile (0, 1) for (1, 0).

Proof of Proposition 4. Appendix B shows the transition matrix for equilibrium play for

the case in which 0 ≤ p ≤ 1 and 0 ≤ p ≤ 1.

To calculate the long run probability of the system being in each of the twenty states, we

solve the following system of equations:
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π1Ls =
1

2
(1− q) (π1Rs + π2Ls + π2Rs + π1Rw00 + π1Rw10 + π1Rw01 + π1Rw11

+ π2Lw00 + π2Rw00 + π2Lw10 + π2Rw10 + π2Lw01 + π2Rw01 + π2Lw11 + π2Rw11)

π1Rs =
1

2
(1− q) (π1Ls + π2Ls + π2Rs + π1Lw00 + π1Lw10 + π1Lw01 + π1Lw11

+ π2Lw00 + π2Rw00 + π2Lw10 + π2Rw10 + π2Lw01 + π2Rw01 + π2Lw11 + π2Rw11)

π2Ls =
1

2
(1− q) (π1Ls + π1Lw00 + π1Lw10 + π1Lw01 + π1Lw11)

π2Rs =
1

2
(1− q) (π1Rs + π1Rw00 + π1Rw10 + π1Rw01 + π1Rw11)

π1Lw00 = π1Rsqp(1−
p

2
) +

1

2
q (π1Rw00 + π2Lw00 + π2Rw00)

π1Rw00 = π1Lsqp(1−
p

2
) +

1

2
q (π1Lw00 + π2Lw00 + π2Rw00)

π1Lw10 = π1Rsq
(
p− p

)
(1−

p+ p

2
) +

1

2
q (π1Rw10 + π2Lw10 + π2Rw10)

π1Rw10 =
1

2
q (π1Lw10 + π2Lw10 + π2Rw10)

π1Lw01 =
1

2
q (π1Rw01 + π2Lw01 + π2Rw01)

π1Rw01 = π1Lsq
(
p− p

)
(1−

p+ p

2
) +

1

2
q (π1Lw01 + π2Lw01 + π2Rw01)

π1Lw11 = π1Rsq(1− p)(1−
1 + p

2
) +

1

2
q (π1Rw11 + π2Ls + π2Rs + π2Lw11 + π2Rw11)

π1Rw11 = π1Lsq(1− p)(1−
1 + p

2
) +

1

2
q (π1Lw11 + π2Ls + π2Rs + π2Lw11 + π2Rw11)

π2Lw00 = π1Lsq
p2

2
+

1

2
qπ1Lw00

π2Rw00 = π1Rsq
p2

2
+

1

2
qπ1Rw00

π2Lw10 =
1

2
qπ1Lw10

π2Rw10 = π1Rsq
(
p− p

) p+ p

2
+

1

2
qπ1Rw10

π2Lw01 = π1Lsq
(
p− p

) p+ p

2
+

1

2
qπ1Lw01

π2Rw01 =
1

2
qπ1Rw01

π2Lw11 = π1Lsq (1− p)
1 + p

2
+

1

2
qπ1Lw11

π2Rw11 = π1Rsq (1− p)
1 + p

2
+

1

2
qπ1Rw11,

where πajwc refers to the long-run probability of being in a state characterized by a weak (w)

executive of age a (a ∈ {1, 2}) from party j (j ∈ {L,R}) and by centralization profile c (c ∈
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{00, 01, 10, 11}), while πajs denotes the long-run probability of being in a state characterized

with a strong (s) executive of age a (a ∈ {1, 2}) from party j (j ∈ {L,R}).

This system provides a unique solution for the twenty long-run probabilities. These long-run

probabilities can be used to calculate the four long-run probabilities of being in state with

decentralization (φ00), partial centralization (φ10 and φ01) and full centralization (φ11) used

in equation (13) as follows:

φ11 = π1Lw11 + π1Rw11 + π2Lw11 + π2Rw11 + π2Ls + π2Rs + (π1Ls + π1Rs)(1− p)

φ00 = π1Lw00 + π1Rw00 + π2Lw00 + π2Rw00 + (π1Ls + π1Rs)p

φ10 = π1Lw10 + π1Rw01 + π2Lw10 + π2Rw01

φ01 = π1Lw01 + π1Rw10 + π2Lw01 + π2Rw10 + (π1Ls + π1Rs)(p− p).

Comparing Ωe to welfare from full centralization, Ω11 = W11(x
∗), partial centralization,

Ω10/01 = 1
2

(W10(x
∗) +W01(x

∗)) and decentralization, Ω00 = W00(x
∗) we can show that

Ω00 > Ω10/01 > Ωe > Ω11.

B Transition Matrix for Welfare Calculations

Below we present the transition matrix for equilibrium play for 0 ≤ p ≤ 1 and 0 ≤ p ≤ 1.

For legibility, the first 10 and last 10 columns are presented separately. States with a strong

executive of age a from party j are denoted by ajs. States with a weak executive of age a

from party j and a centralization profile c are denoted by ajwc.
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1Ls 1Rs 2Ls 2Rs 1Lw00 1Rw00 1Lw10 1Rw10 1Lw01 1Rw01

1Ls 0 1
2
(1− q) 1

2
(1− q) 0 0 qp

(
1− p

2

)
0 0 0 q(p−

p)
(

1− p+p

2

)
1Rs 1

2
(1− q) 0 0 1

2
(1− q) qp

(
1− p

2

)
0 q(p−

p)
(

1− p+p

2

) 0 0 0

2Ls 1
2
(1− q) 1

2
(1− q) 0 0 0 0 0 0 0 0

2Rs 1
2
(1− q) 1

2
(1− q) 0 0 0 0 0 0 0 0

1Lw00 0 1
2
(1− q) 1

2
(1− q) 0 0 1

2
q 0 0 0 0

1Rw00 1
2
(1− q) 0 0 1

2
(1− q) 1

2
q 0 0 0 0 0

1Lw10 0 1
2
(1− q) 1

2
(1− q) 0 0 0 0 1

2
q 0 0

1Rw10 1
2
(1− q) 0 0 1

2
(1− q) 0 0 1

2
q 0 0 0

1Lw01 0 1
2
(1− q) 1

2
(1− q) 0 0 0 0 0 0 1

2
q

1Rw01 1
2
(1− q) 0 0 1

2
(1− q) 0 0 0 0 1

2
q 0

1Lw11 0 1
2
(1− q) 1

2
(1− q) 0 0 0 0 0 0 0

1Rw11 1
2
(1− q) 0 0 1

2
(1− q) 0 0 0 0 0 0

2Lw00 1
2
(1− q) 1

2
(1− q) 0 0 1

2
q 1

2
q 0 0 0 0

2Rw00 1
2
(1− q) 1

2
(1− q) 0 0 1

2
q 1

2
q 0 0 0 0

2Lw10 1
2
(1− q) 1

2
(1− q) 0 0 0 0 1

2
q 1

2
q 0 0

2Rw10 1
2
(1− q) 1

2
(1− q) 0 0 0 0 1

2
q 1

2
q 0 0

2Lw01 1
2
(1− q) 1

2
(1− q) 0 0 0 0 0 0 1

2
q 1

2
q

2Rw01 1
2
(1− q) 1

2
(1− q) 0 0 0 0 0 0 1

2
q 1

2
q

2Lw11 1
2
(1− q) 1

2
(1− q) 0 0 0 0 0 0 0 0

2Rw11 1
2
(1− q) 1

2
(1− q) 0 0 0 0 0 0 0 0

1Lw11 1Rw11 2Lw00 2Rw00 2Lw10 2Rw10 2Lw01 2Rw01 2Lw11 2Rw11

1Ls 0 q(1−

p)
(
1− 1+p

2

) q
p2

2
0 0 0 q(p− p)p+p

2
0 q(1− p)1+p

2
0

1Rs q(1−

p)
(
1− 1+p

2

) 0 0 q
p2

2
0 q(p− p)p+p

2
0 0 0 q(1− p)1+p

2

2Ls 1
2
q 1

2
q 0 0 0 0 0 0 0 0

2Rs 1
2
q 1

2
q 0 0 0 0 0 0 0 0

1Lw00 0 0 1
2
q 0 0 0 0 0 0 0

1Rw00 0 0 0 1
2
q 0 0 0 0 0 0

1Lw10 0 0 0 0 1
2
q 0 0 0 0 0

1Rw10 0 0 0 0 0 1
2
q 0 0 0 0

1Lw01 0 0 0 0 0 0 1
2
q 0 0 0

1Rw01 0 0 0 0 0 0 0 1
2
q 0 0

1Lw11 0 1
2
q 0 0 0 0 0 0 1

2
q 0

1Rw11 1
2
q 0 0 0 0 0 0 0 0 1

2
q

2Lw00 0 0 0 0 0 0 0 0 0 0

2Rw00 0 0 0 0 0 0 0 0 0 0

2Lw10 0 0 0 0 0 0 0 0 0 0

2Rw10 0 0 0 0 0 0 0 0 0 0

2Lw01 0 0 0 0 0 0 0 0 0 0

2Rw01 0 0 0 0 0 0 0 0 0 0

2Lw11 1
2
q 1

2
q 0 0 0 0 0 0 0 0

2Rw11 1
2
q 1

2
q 0 0 0 0 0 0 0 0
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