Online Appendix to ”Federalism and Ideology”



Appendix

A Proofs of Theoretical Results

Proof of Lemma 1. Using the expressions for U, (x} (21, ¢:),y) and substituting for y, =

—y1 and zp = —z, yields

For executive L:

Y2 (=8y(w — 1) + 6w — 8) — 2wz2, if ¢, = (0,0)
i (W =29(w—1))* +2(w—2)) +
U (i (on2)) = 2wy1z,(2y(w —1) —w +2) + (w — 2)wz?, if e, =(0,1)
yi (W =2y(w—1))* +2(w—2)) +

2wz (—2y(w — 1) + w — 2) + (w — Jwz2, if ¢, = (1,0)
2w = 1) (yi(4(y = Dy(w = 1) +w) +wzi) if e, = (1,1)
P2 (—8y(w — 1) + 6w — 8) — w2, it ¢, = (0,0)
i (W =29(w—1))* +2(w—2)) +
Ut nlot{rm00) = 2wz (27(w — 1) —w +2) — w(Bw +2)22,  if e, = (0,1)
yi (w0 —27(w—1))* +2(w — 2)) +

2wy zn(—2v(w — 1) 4w — 2) — w(Bw + 2)22,  if e = (1,0)

20w —Dyid(y — D)y(w—1) +w) — 2w(3w + 1)22, if ¢, = (1,1)




For executive R:

Y3 (—8y(w — 1) 4 6w — 8) — 2wz3, if ¢; = (0,0)
yi ((w—27(w—1))* +2(w —2)) +
U rn 00) = 2w zp(=29(w — 1) + w — 2) + (w — w22, if ¢, = (0,1)
yi (W —=27(w—1))? +2(w—2)) +

2wy 2027w —1) —w+2) + (w — 2wz?, if ¢, = (1,0)
2w —1) (i (4(y = Dy(w — 1) +w) +w2F) if ¢, = (1,1)
Y2 (—8y(w — 1) + 6w — 8) — 2wz}, if ¢; = (0,0)
yi (W —=27(w—1))? +2(w—2))+
Ut (53 (o) = 2w zp(—2v(w —1) +w —2) —w(Bw +2)22,  if ¢, = (0,1)
yi (W =29(w—1))* +2(w—2)) +

2wy121(27(w — 1) —w + 2) — w(3w + 2)2%, if ¢, = (1,0)

20w —Dyi4(y — Dy(w — 1) + w) — 2w(3w + 1)27, if ¢, = (1,1)

Subtracting expressions for particular executive and centralization profile when executives

from different parties are in power implies equation (5).

Proof of Lemma 2. The preference orderings for each type of executive and for cut-offs

directly follow from comparison of relevant expressions in the proof of Lemma 1.

Proof of Proposition 1. Denote the difference between the terms that correspond to the

age 1 period t executive’s utility from a strong executive in period ¢ + 1 as:
Vj S {Lv R} A= Uﬁj(X:(Zjv (1’ 1))) - Ept+1 [Uje,—j<xzk+1(z—j7 Ct+1))] :

It is straightforward to see that due to symmetrical ideal points of executives and localities,
A does not depend on the executive’s party. In addition A > 0, since Uf;(x;(z;, (1,1))) is

the maximum possible stage utility a party j executive can receive and no lottery over other
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possible policy choices can bring higher utility.

To see how the electoral environment changes the incentives to adopt different centralization

profiles, we take the derivative of V7 (¢, p;) with respect to p; at each possible profile:

(1-g)A ife = (0,0)

oVy (e, p) qdw*zi + (1 —q) A if e, = (0,1) (14)
Opy qdw?z? + (1 —q) A if ¢, = (1,0)
\ q8w?2i + (1 —q) A if ¢, = (1,1).

It is clear that V7, (¢4, py) is linear and increasing in p;, and furthermore

ove (1, 1),pe) _ OVp((1,0),p) _ 9VE((0,1),p) _ OV ((0,0),p0)

0.
Opy Opy Ipy Opy

The corresponding derivatives for a party R executive’s objective are identical. Since higher
levels of centralization have higher slopes with respect to p;, centralization must be mono-

tonically increasing in py.

The existence of the cut-off values of p;, p and p, for which there are unique most pre-
ferred centralization profile for executive from party j can be proven directly by comparison
of expressions for Vj (c;, p;) for each executive across different centralization profiles. The

expressions are as follows



VL(Ct7pt) =

7

(1

(1

(1

\

(1= @)(Uf 1 (xi (22, (1, 1)) = (1 = pr)A) =

g (12(8v(w — 1) — 6w + 8) + 2w22) + g2 (—8y(w — 1) + 6w — 8) — w22, if ¢, = (0,0)
—q)(Uf 1 (x; (21, (1, 1)) — (1 = p) A)+

q (w2 ((4pe = 3)w = 2) + 4 (w0 = 29(w = 1))* + 2(w = 2)) + 2wy 21 (2v(w — 1) —w +2)) +
Yt (W —27(w = 1))* +2(w —2)) + 2wyr20(27(w — 1) —w +2) + (w — 2wz, if ¢, = (0,1)
— ) (UL (7 (21, (1, 1)) — (1 = p) A)+

q (w2 ((4pe = 3)w — 2) +yi (w0 = 27(w = 1))* + 2(w = 2)) + 2wyrzL(~2v(w — 1) +w = 2)) +
Ui (W —=27(w = 1))* +2(w — 2)) + 2wyrz0(~2y(w — 1) + w = 2) + (w — 2)wz], if ¢, = (1,0)
—q)(Uf o (x (21, (1,1))) = (1 — p) A)+

q 2wz ((4pe — 3)w — 1) + 2(w = Dyi(4(y — Dy(w — 1) +w)) +

2w —1) (Wi — Dy(w—1)+w) +wzi), if ¢, = (1,1)

VR(Cnpt) =

(1

(1

(1

(1

— ) (Ug p(x (2r, (1,1))) = (1 = p)A)—

¢ (2 (87(w — 1) — 6w + 8) + 2wz2) + y2(—8y(w — 1) + 6w — 8) — 2w22, if ¢, = (0,0)
— q)(Ug p(x (2r, (1,1))) = (1 = ps) A)+

q (w2 ((4pe = 3)w = 2) +yi (w0 = 27(w = 1))* + 2(w = 2)) + 2wyr2(~2v(w — 1) +w = 2)) +
vt (W —=27(w = 1))* +2(w - 2)) + 2wyrz0(~2y(w — 1) + w = 2) + (w — 2wz}, if ¢, = (0,1)
— @)Uk p(xi (2R, (1,1))) — (1 — pr)A)+

q (w2 ((4pe = 3)w = 2) + 9 (w0 = 29(w — 1))* + 2(w = 2)) + 2wy 21(27(w — 1) —w +2)) +
Yt (0= 2y(w = 1))* +2(w = 2)) + 2wyr20(2y(w — 1) —w +2) + (w — 2wz}, if ¢; = (1,0)
— ) (Ug p(x (2r, (1,1))) = (1 = pr) A)+

q (2wzg((4pr — 3)w — 1) +2(w — yi(A(y — Dy(w — 1) + w)) +

2w -1 (y74(y = Dy(w—1)+w)+wzi), if ¢, = (1,1)



The resulting cut-offs that define the most preferred centralization profile in infinite horizon
game are given in equations (9) and (10) and are the same for both executives for their
respective probabilities of re-election. It is straightforward to see that the difference between

these cut-offs is
1+q2y+2(1—7)/w—-1y
q ZL '

P-p=

Since z;, < 0 and y; < 0, and 2 [7 +(1-— 7)%)] — 1 > 0, this expression is always positive,

and thus p > p.

Proof of Proposition 2. The proof directly follows from solving for p = 0 and p = 0 using

the expressions in equations (9) and (10).

Solving p = 0 for 2, produces one negative root that simplifies to:

14+qg+2 1+ 2(1 —

o 1ta+2Ve(1l+4q) 2+ -7 " (15)
1—3¢q w

For 21, < z,, p > 0; Proposition 1 implies that (0,0) is the preferred profile for p; < p. This

cut-point exists (i.e., is negative) if and only if ¢ > % In addition, it is straightforward to

show that 2, < y; when ¢ > %: Executives have to be more polarized than localities for (0, 0)

to be implementable.

Solving p = 0 for z, yields two roots. The first is:

_1+q-2Vq(1+9) (27+ 2(1; ) 1) " (16)

" 1 —3q

For z; > z., p < 0. Again invoking Proposition 1, for z; > z., (1,1) is the preferred profile

for all p;. It can be shown that when ¢ > %, p = 0 can hold only if z;, > y;.



The second root is:

P 1—

o lta+ 2\/32(1 +q) (27 N w 3 1) " (17

For z;, < 2z, p < 0; by Proposition Proposition 1, for z;, < z,, (1,1) is the preferred profile

for all p;. This cut-point exists (i.e., is negative) if and only if ¢ < %

Now define
! : 1
) if ¢ > 3
zp n oo 1
zy if ¢ < 3

Part (i) of the result follows from the derivation of z.. Part (ii) follows from the derivations

of z. and z,. Finally, parts (iii) and (iv) follow from the derivation of z,.

Proof of Proposition 3. We first provide the condition under which profile (0, 0) dominates
profile (1,1). From (12), it is obvious that Wyo(x*) is constant in z;, and Wi, (x*) is maximized

at z;, = 0. Evaluating both at z;, = 0 yields that Wyy(x*) is always higher than Wi, (x*) if:

24w
242w’

v >

Next, we provide the condition under which profile (1,0) dominates profile (0, 1). From (12),
it is straightforward to verify that Wy (x*) and Wio(x*) are parabolas that are symmetric
around z7, = 0 and maximized at y;(1 — 27y) and —y; (1 — 27) respectively, but are otherwise
identical. Thus (1,0) dominates profile (0, 1) if and only if —y;(1 — 27y) < y1(1 — 2). Since

y1 < 0, this is equivalent to v > 1/2.

Now consider three cases. (i) If v > (2+w)/(2+4 2w), then (1,1) is never welfare maximizing

and (1,0) dominates (0,1). Solving for z, the welfare under (1, 0) is higher than under (0, 0)



if:

Wm (X* ) > WOO (X*)

€ (ylww =RLLLR R —w—z>)

(18)

Since 1 (27(w+1)—w—2)/w > 0 and y; (2y(w—1)—w+2)/w < 0, (1,0) is welfare maximizing

for z;, > y1(2y(w — 1) — w4 2)/w and (0, 0) is welfare maximizing otherwise.

(i) If vy € (1/2, (2 + w) /(2 + 2w)], then (0,0), (1,0), and (1, 1) may all be welfare maximizing.
The condition for Wig(x*) > Wy(x*) is given by (18). The condition for Wi (x*) > Wio(x*)

evaluates to:

)

- <yl(—27(w 21) +w+2) pi(—27y(w —wl) +w— 2)) |

Since y1(—2y(w — 1) +w —2)/w > 0 and y1(—27(w + 1) + w + 2) /w < 0 for these values of
v, Wi (x*) > Wio(x*) for z;, > y1(—27(w + 1) + w + 2) /w. Observe finally that:

y(—2y(w+1)+w+2) p2y(w-1)—w+2) y1(2—47)>

0,

w w w

so the interval of z;, for which (1,0) is welfare maximizing is non-empty.

(iii) If v < 1/2, the analysis is identical to case (ii), but (since (0,1) dominates (1,0))

substituting in profile (0, 1) for (1,0).
Proof of Proposition 4. Appendix B shows the transition matrix for equilibrium play for
the case in which 0 <p<land0<p<1.

To calculate the long run probability of the system being in each of the twenty states, we

solve the following system of equations:



TiLs = = (1 = q) (T1rs + T2Ls + T2Rs + T1Rw00 + T1Rw10 + T1RWO1 + T1RwWIL

DN |

+ T2rw00 + T2Rw00 + T2Lwlo + T2RwW10 + T2Lwo1 + T2RWo1 + T2Lwil + T2Rw11)

1
T1Rs = 5 (1 —q) (miLs + Tors + T2rs + T1Lw00 + T1Lw10 + T1Lwol + T1Lwil
+ T2r,w00 + T2Rw00 + T2Lwlo + T2Rw10 + T2Lwo1 + T2RwWo1 + T2Lwil + T2Rw11)
1
MoLs = 3 (1 —¢) (mins + T1Lwoo + T1Lwio + T1Lwol + T1Lwil)
1
T2Rs = 3 (1 —¢q) (T1rs + T1RwOO + T1RWI0 + T1RWO1 + T1RwI1)

p 1
T1Lwoo = T1RsqP(1 — ) + 54 (T1Rwo0 + T2Lw00 + T2Rw00)

2 2
p 1
T1Rwo0 = T1LsqP(1 — 5) + iq (T12w00 + T2Lw00 + T2Rw00)
_ p+D 1
T1Lwl0 = T1Rsq (p - B) (1- ’T) + 5(1 (T1Rw10 + T2Lw10 + T2Rw10)
T1Rw10 = iq (T1Lw10 + T2Lwi0 + T2Rw10)
T1Lw0l = 561 (T1Rwo1 + T2Lw01 + T2RWO1)
_ p+D 1
T1RwO1 = T1Lsq (p *Ij) (1- *T) + 54 (T1Lwo1 + T2Lwo1 + T2RwO1)
_ 1+p 1
TiLwil = Tirsq(1 —p)(1 — T) + 54 (T1Rw11 + T2rs + T2Rrs + T2Lwil + T2Rw11)
_ 1+p
TirRw1l = T1Lsq(1 —P)(1 — T) + 561 (T1Lwi1 + Tors + Tors + ToLwil + T2Rwi1)
P o1
T2Lw00 = T1Lsq + 541 Lw00
P o1
T2RwW0O0 = 771qu? + §q7TlRw00
1
T2 Lwl0 = §q7T1Lw1o
_ p+p 1
T2Rw10 = T1Rsq (p - B) ’T + §q7T1Rw10
_ p+p 1
T2Lw01 = T1Lsq (P - B) ’T + §QW1Lwo1
1
T2Rw01 = §q7T1Rwo1
_1+p 1
Torwil = TiLsq (1 —P) 5 + 5 dMLw1

_1+p 1
ToRrwll = T1Rrsq (1 — D) 5 + 0™ Rw11,

where 74, refers to the long-run probability of being in a state characterized by a weak (w)

executive of age a (a € {1,2}) from party j (j € {L, R}) and by centralization profile ¢ (¢ €



{00,01, 10, 11}), while m,;s denotes the long-run probability of being in a state characterized

with a strong (s) executive of age a (a € {1,2}) from party j (j € {L, R}).

This system provides a unique solution for the twenty long-run probabilities. These long-run
probabilities can be used to calculate the four long-run probabilities of being in state with
decentralization (¢qg), partial centralization (¢19 and ¢o;) and full centralization (¢11) used

in equation (13) as follows:

$11 = T1Lwil + TiRw11 + T2Lwil + Tarwil + Torns + Tors + (Tis + Tirs)(1 — D)
P00 = T1Lw00 + T1Rwoo + T2Lw00 + T2rwoo + (T1Ls + T1Rs)D

10 = T1Lwl0 T T1Rwo1 + T2Lwi0 + T2Rwo1

$o1 = T1Lw01 + T1Rw10 + T2Lwo1 + T2Rwi0 + (TiLs + TiRs)(D — D).

Comparing Q. to welfare from full centralization, Qy; = Wi;(x*), partial centralization,

Qiojor = % (Wio(x*) + Woi(x*)) and decentralization, Qg9 = Woo(x*) we can show that

Qoo > Qiojor > Qe > .

B Transition Matrix for Welfare Calculations

Below we present the transition matrix for equilibrium play for 0 < p<land 0<p<1
For legibility, the first 10 and last 10 columns are presented separately. States with a strong
executive of age a from party j are denoted by ajs. States with a weak executive of age a

from party ;7 and a centralization profile ¢ are denoted by ajwe.



1Ls 1Rs 2Ls 2Rs 1Lw00 1Rw00 1Lw10 1Rw10 1LwO01 1RwO01
1Ls 0 l1-gq l1-q 0 0 ap(1-5) 0 0 0 P
1Rs 1(1—-9q) 0 0 11—9q ap(1-5) 0 q(p— 0 0 0
n(-%)

2Ls -9 i1-q 0 0 0 0 0 0 0 0

2Rs 3(1—9q) HEEO] 0 0 0 0 0 0 0 0
1Lw00 0 -9 L1-gq 0 0 L 0 0 0 0
1Rw00 3(1—9q) 0 0 11—9q) 1q 0 0 0 0 0
1Lw10 0 l1-9) L1-9q 0 0 0 0 1q 0 0
1Rw10 3(1—9q) 0 0 11—-9q) 0 0 19 0 0 0
1LwO1 0 l1-9) L1-q) 0 0 0 0 0 0 L
1RwO1 3(1—9q) 0 0 1(1—9q) 0 0 0 0 1q 0
1Lwi1l 0 l1-9) t1-gq) 0 0 0 0 0 0 0
1Rwl11 3(1—9q) 0 0 1(1—q) 0 0 0 0 0 0
2Lw00 119 U] 0 0 1q L 0 0 0 0
2Rw00 3(1—9q) 11-q) 0 0 1q 1q 0 0 0 0
2Lw10 11-9q U] 0 0 0 0 L 19 0 0
2Rw10 3(1—9q) 11-q) 0 0 0 0 1q 34 0 0
2Lw01 i1-9q U] 0 0 0 0 0 0 i L
2RwO01 (l—q) 11-9) 0 0 0 0 0 0 1q 4
2Lwll -9 i1-q 0 0 0 0 0 0 0 0
2Rwll H(l—q) 1-9) 0 0 0 0 0 0 0 0

1Lwll 1Rw11l 2Lw00 2Rw00 2Lw10 2Rw10 2LwO01 2Rw01 2Lwll 2Rwll
1Ls 0 q(1— q’—7 0 0 0 9P — Q)ﬁf 0 q(1—p)2 0
p(1-57)

1Rs q(1— 0 0 & 0 a@-p)H? 0 0 0

2Ls 1q i 0 0 0 0 0 0 0 0

2Rs 34 1q 0 0 0 0 0 0 0 0
1Lw00 0 0 i 0 0 0 0 0 0 0
1RwO00 0 0 0 1q 0 0 0 0 0 0
1Lw10 0 0 0 0 iq 0 0 0 0 0
1Rw10 0 0 0 0 0 1q 0 0 0 0
1Lw01 0 0 0 0 0 0 i 0 0 0
1RwO1 0 0 0 0 0 0 0 1q 0 0
1Lwll 0 iq 0 0 0 0 0 0 iq 0
1Rw11 34 0 0 0 0 0 0 0 0 1q
2Lw00 0 0 0 0 0 0 0 0 0 0
2Rw00 0 0 0 0 0 0 0 0 0 0
2Lw10 0 0 0 0 0 0 0 0 0 0
2Rw10 0 0 0 0 0 0 0 0 0 0
2Lw01 0 0 0 0 0 0 0 0 0 0
2Rw01 0 0 0 0 0 0 0 0 0 0
2Lwll 34 1q 0 0 0 0 0 0 0 0
2Rwll 1q iq 0 0 0 0 0 0 0 0
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